用數學語言表述事物的狀態、關係和過程,並加以推導、演算和分析,以形成對問題的解釋、判斷和預言的方法。無論自然科學、技術科學或社會科學,為瞭要對所研究的對象的質獲得比較深刻的認識,都需要對之作出量的方面的刻畫,這就需要借助於數學方法。對不同性質和不同複雜程度的事物,運用數學方法的要求和可能性是不同的。總的看,一門科學隻有當它達到瞭能夠運用數學時,才算真正成熟瞭。在現代科學中,運用數學的程度,已成為衡量一門科學的發展程度,特別是衡量其理論成熟與否的重要標誌。<

  在科學研究中成功地運用數學方法的關鍵,就在於針對所要研究的問題提煉出一個合適的數學模型,這個模型既能反映問題的本質,又能使問題得到必要的簡化,以利於展開數學推導。

  建立數學模型是對問題進行具體分析的科學抽象過程,因而要善於抓住主要矛盾,突出主要因素和關系,撇開那些次要因素和關系。建立模型的過程還是一個“化繁為簡”、“化難為易”的過程。當然,簡化不是無條件的,合理的簡化必須考慮到實際問題所能允許的誤差范圍和所用的數學方法要求的前提條件。對於同一個問題可以建立不同的數學模型,同時在研究過程中不斷檢驗、比較,逐漸篩選出最優的模型,並在應用過程中繼續加以檢驗和修正,使之逐步完善。從一個特殊問題抽象出來的數學模型常常具有某種程度的普遍性,這是因為一個特殊的數學模型可以發展成為描述同一類現象的共同的數學模型。已經獲得廣泛應用並且卓有成效的數學模型大體上有兩類:一類稱為確定性模型,即用各種數學方程如代數方程、微分方程、積分方程、差分方程等描述和研究各種必然性現象,在這類模型中事物的變化發展遵從確定的力學規律性;另一類稱為隨機性模型,即用概率論和數理統計方法描述和研究各種或然性現象,事物的發展變化在這類模型中表現為隨機性過程,並遵從統計規律,而且具有多種可能的結果。客觀世界的必然性現象和或然性現象並不是截然分開的。有些事物主要地表現為必然性現象,但是當隨機因素的影響不可忽視時,則有必要在確定性模型中引入隨機因素,從而形成隨機微分方程這樣一類數學模型。20世紀70年代以來,還陸續發現在一些確定性模型中,如某些描述保守系統或耗散結構的非線性方程,並不附加隨機因素,但卻在一定的參數范圍內表現出“內在的隨機性”,即出現分岔和混沌的隨機行為。這類現象的機制及其數學問題已引起數學傢和科學傢的重視,目前正在研究中。

  數學本身是不斷發展的,對各種量、量之間以及量的變化之間關系的研究也在日益深入,新的數學概念、新的數學分支在不斷出現,新的數學方法同樣在相應地孕育和萌生。隨著數學日益廣泛地向各門科學滲透,與各種對象和各種問題相結合,人們正在從中提煉出各種新的數學模型,創建各種新的數學工具。尤其是電子計算機的運用使數學方法顯示出新的生機,出現瞭所謂“數學實驗方法”。這種方法的實質是不在實際客體上實驗,而在其數學模型上“實驗”,這種“實驗”的操作就是在電子計算機上實現大量的數值運算和邏輯運算。這就使以往由於工作量大而難以進行的試算課題有可能完成。數學方法在這方面的發展前景是可觀的。